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STABILITY PROPERTIES OF AZIMUTHALLY SYMMETRIC
PERTURBATIONS IN AN INTENSE ELECTRON BEAM

I. INTRODUCTION

In recent years there have been numerous theoretical investigations

of the equilibrium I '2 and stability 3- 8 properties of intense charged

particle beams, motivated by a variety of applications, including confine-

ment and transport 9 -1 of a nonneutral electron beam, inertial confinement
12,13

fusion 1 driven by charged particle beams, and electron beam propaga-

tion14,15 through a background plasma. Although these research activities

have different goals and objectives, they have in common the need to under-

stand the stability properties of intense charged beams characterized by

strong self electric and magnetic fields. However, previous theoretical

studies of the resistive instabilities (except for hose) have been based

on highly simplified models, such as the cold fluid treatment of Ref. 8.

The primary purpose of the present paper is to develop a Vlasov-Maxwell

description of azimuthally symmetric perturbations about an electron beam,

including the higher radial mode numbers (e.g. hollowing modes), which

have been given scant attention in the literature, although they appear to

be troublesome in the presence of a return current. We also include a

treatment of the hose instability based on the same model. With straight-

forward modifications, the results of this paper can also be applied to

12,16,17 inesiobemwhcarthe transverse instabilities of an intense ion beam, which are

particularly important in heavy-ion fusion applications.

The equilibrium and stability analysis is carried out for an

infinitely long electron beam propagating parallel to a uniform applied

magnetic field B0 ? through a background plasma with conductivity o(r),

which in general can be a function of the oscillation frequencies of

fluctuating fields and the collision frequencies of each species in the

Manuscript submitted December 1, 1980.

1



plasma. Our solutions are carried out for step-function profiles and

real values of a(r), but the value of a can be arbitrarily large or small.

The radial profiles of plasma charge and current are assumed to be

similar to the beam profile, but the degree of charge and current

neutralization is arbitrary. It is assumed that v/Yb << 1, wherev and

2
ybmc are Budker's parameter and the characteristic energy, respectively,

m is the electron rest mass and c is the speed of light in vacuo.

Equilibrium and stability properties are calculated for an electron beam

described by a "loss-cone" distribution function LEq. (2)", which leads

to a flat-topped beam radial profile. Equilibrium properties and basic

assumptions are briefly discussed in Sec. II.

The formal stability analysis for azimuthally symmetric perturbations

is carried out in Sec. III, within the framework of the linearized Vlasov-

Maxwell equations. In the analysis, the response of the background plasma

is incorporated in terms of the plasma conductivity. An integro-differential

eigenvalue equation LEqs. (22) ] is obtained for azimuthally symmetric

perturbations, given any value of plasma conductivity, assuming long wave-

length (kRb << 1), low frequency (WRb << c) perturbations, where k is the

axial wavenumber, w is the oscillation frequency, and R is the beam radius.

Equations (22) constitute a principal result of this paper and can be used

to investigate stability properties for a broad range of system parameters.

In Sec. IV, dispersion relations for the radial mode numbers n = 0,

1 and 2 are obtained analytically from the integro-differential eigenvalue

equation (22) by an approximation method based on the assumption wrd < J,

2.



where Td is a magnetic decay time defined by Td = 1I 2 2 [Eq. (26)

d d l b/2c[E.(6

For example, the dispersion relation for the n = 1 (sausage) mode can be

expressed as [Eq. (65) ],

2 2

+ 8 b i/Ob

- i) LI - i;(WRb/c)2 /6]

where Z = (w - k$bc)/W pb is the normalized Doppler-shifted eigenfrequency,
2 27/2b

n -- 2L (i - f) - (W - ) + bb and 4 E 4ra 1/ are the focussing

2 (2 2 )/
force and conductivity parameters, respectively, 

8b = Y

^B/man2^ 1/2
Wcb =  0bc and pb Te nb/Ybm) are the beam electron cyclotron

and plasma frequencies, respectively, f and f are the fractional chargee m

and current neutralization, respectively. The limiting case of a non-

neutral electron beam in a non-conducting environment (C- 0) is discussed

in Sec. IV. For example, in the limit of C = 0, the dispersion relation

for n = 1 [in Eq. (65)] reduces to

2 2
Z = n + I b

which is identical to the previous result obtained by Uhm and Davidson.
3

Analytic investigations of the dispersion relations for n = 0,

1 and 2 are carried out in Sec. V.A for collision-dominated plasmas with

a high conductivity satisfying C >> 1. We find that both the n = 1

(sausage) and n = 2 (hollowing) modes are driven unstable by either a

strong fractional plasma return current (fm) or by a magnetic phase lag

(WTd > 0). As an example a simplified version of the n = 1 dispersion

relation [Eq. (67) 1

Z2 2 ) i (w/c)2z- B [(1 -2f m )-,
b m 6C~/)j
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which is obtained from Eq. (65) in the limit of n = 28 2(1 - f ) and
b m

WTd << 1, shows clearly that the system is unstable whenever the

fractional current neutralization fm > 0.5, even for a very small magnetic

decay time. It is also remarkable to observe that for f = 0, Eq. (67)m

is similar to the result obtained by Weinberg within the framework of the

coaxial circular orbit beam model.

Several points are noteworthy in the numerical analysis of the

dispersion relations presented in Sec. V.B. for a self-pinched electron

beam (w cb = 0). First, the n = 1 perturbation is the most unstable

azimuthally symmetric mode. Even if f = 0, the maximum growth rate ofm

instability for the n = 1 perturbation is Z - ImZ = 0.205, which isi
7

comparable to that of the resistive hose instability. Second, the n = 2

perturbation has two unstable modes. Third, except the n = 0 perturbation,

we find for f = 0 that the growth rate of instability goes through twom

maxima as C is varied. The first maximum occurs at C 1, where electro-

static effects are strong, and the second one at wT d 1 where the

instability is driven by the magnetic phase lag. For a highly relativistic

beam, the growth rate is equal at the two maxima.

In Sec. VI, similar models and analytic techniques are applied to

the theory of the hose instability in a medium of arbitrary conductivity,

and with arbitrary values of the fractional charge and current neutraliza-

tion. The instability properties are similar in many respects to those of

the m - 0 modes: the hose instability also has maximum growth rates at

; 1 and wTd '- 1, it too is driven strongly unstable by return current,

and the hose growth rates are comparable to those of the sausage.
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II. EQUILIBRIUM THEORY AND BASIC ASSUMPTIONS

The equilibrium configuration consists of an intense electron beam

that is propagating parallel to a uniform applied magnetic field B0ez

through a background plasma with a conductivity a(r), and is located

inside a grounded cylindrical conducting wall with radius R . Cylindricalc

polar coordinates (r,e,z) are used, with the z-axis along the axis of

symmetry. In equilibrium (a/at = ), the beam is assumed to be azimuthally

symmetric (a/Da = 0), infinitely long, and axially uniform (3/3z 0). The

number of electrons per unit axial length (N ) is defined by

b

N 2 0 dr r n b(r) = TRbnb(r = 0)

00

where n (r) is the equilibrium density profile, and Rb is the characteristic
b

beam radius. In the present analysis, we assume that

2
N e

V b 12 - <I, (1)
b mc Yb

2. .

where v is Budker's parameter, c is the speed of light in vacuo, Ybmc is

the characteristic electron energy, -e and m are the electron charge and

rest mass, respectively. Equation (1) guarantees that the beam is paraxial,

i.e., transverse electron velocities are much smaller than axial velocities.

In this paper, we investigate the equilibrium and stability

properties for a steady-state (a/at = 0) beam distribution of the form

0 n b A 2
f (H,PP )  S(H - wbPe -¥mc ) 6 (Pz Y M bc) (2)
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where the total energy, H = (m2c 4 + c 2) - e 0(r), the canonical

angular momentum, P0 = rp, - eB0r 2/2c, and the axial canonical momentum,

Pz = Pz - (e/c)A0 (r), are the three single-particle constants of the

motion in the equilibrium fields. Here, =(p r~pspz) is the mechanical

momentum, nb# Wb' and y are constants, y b is related to

82 -1
b by yb = (U - 8b , A0 (r) is the axial component of vector potential

for the equilibrium azimuthal self-magnetic field, and 0 (r) is the
0

equilibrium electrostatic potential. As a consequence of Eqs. (1) and

(2), all electrons have axial velocities V very close to the constantz

value 8 bC.

In order to make the theoretical analysis tractable, we assume

that in equilibrium the plasma space charge provides a fractional

neutralization of the beam charge that is uniform through r and z, i.e.,

0 0o  0
n. (r) - n (r) = f n (r) (3)

S e eb

where f is constant with 0< f < 1. It is further assumed that the
e - e

equilibrium plasma return current J0 (r) has the same radial profile as the
p

0
beam current Jb(r), i.e.,

j 0(r) - - fJ (r)p mb

where f is a positive constant with 0 f . 1. An eigenvalue treatment ofm m

the instability is possible only if f and f are taken to be z - independente m

(which is not strictly consistent in a resistive medium). Radial profiles

of plasma charge and current which differ from the beam profile are of

interest, but are not studied in the present paper.

Since the beam is paraxial, it is straightforward to show that the

term H - WbPe in Eq. (2) can be approximated by
6J



2 p2
H - bPe= Ybmc + m+ 0(r) (4)

2 2 2where p= r + (p, -Ybmw br) is the transverse momentum-squared in a ro-

tating frame with the angular velocity Wb' and the effective potential

(r ) is defined by

1 + -2
E0(r) 2 Ybm( b b b -b)r (5)

In Eq. (5),

2 2 1/2

cb cb + W pb 2 2 f (1-f (6)b-2 4 2 Lbl -m ) -1-fe ) (6

where i cb = eBO/Ybmc is the beam electron cyclotron frequency and
A 2  2
wpb = 4Te n/ybm is the beam electron plasma frequency-squared. For

radial confinement in the equilibrium state, it is required from Eq. (6)

that

A2 2 2 A 2
Spbbb/2 pb(1 - fe (7)

which assures that the repulsive space-charge force on the beam electron is

weaker than the magnetic focussing force.

Making use of Eqs. (2) and (4), we find the beam density profile

A

0 n b , O r < R bn Cr) = (8)
b

0, R b <r <R c

where the beam radius R is defined by

2c2 -1- ) (W (+b-- W . The equilibrium solution exists

7



for rotational frequency satisfying Ub < Wb <W W Additional equilibrium

properties associated with the distribution function in Eq. (2) are discussed

in Refs. 3 and 5.
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we use the linearized Vlasov-Maxwell equations to ob-

tain an integro-differential eigenvalue equation for the azimuthally

symmetric (3/66 = 0) modes of an electron beam. We adopt a normal mode

approach in which all perturbed quantities are assumed to vary with z and t

as
A

(x,t) = (r)expi(kz - W t)

with Imw > 0. Here Lu is the oscillation frequency and k is the axial wave-

number. For paraxial beams with all electron axial velocities approximately

constant at vz = bc [which follows from (l) and (2)], it is more convenient

to use T and z, rather than t and z, as independent variables*, where

T E t - z/vz . In this representation, a Fourier decomposition of perturbed

quantities is expressed as

A

(x,t) = @(r)expC-i(wT + lz/vz) , (9)

where - z 2 - kvz =u - kC b is the shifted eigenfrequency "seen" by a

beam particle (but no relativistic charge of frame is implied).

The subsequent stability analysis is restricted to a long wavelength

and low frequency perturbation characterized by

2 2
IkRb 2  < 1 <l. (10)

c

If we forego the possibility of recovering the non-neutral limit,

a 0 , the analysis can be carried through with the weaker assumptions

I Rb/cl " 1 ()

9



and

I kRb/Y21 << 1. (12)

Equation (11) is a weak form of "frozen field" assumption, based on the

fact that Q is characterized by the natural oscillation frequencies of

particle dynamics, wb and W pb b, which always satisfy (11) in a paraxial

beam. Assumption (12) is satisfied either for long wavelengths or in a

highly relativistic beam.

The perturbed electric and ma~netic fields, E(x) and B(x), can be

expressed in terms of perturbed magnetic and electric potentials A(A) and

B(x4) =V x A(x) , (13a)

E~x W i Ax W - 3L
c (13b)

Introducing the Lorentz gauge,

VA - -0x)= (14)
c

into the Maxwell equations, and using (11), the perturbed potentials in

Eq. (13) satisfy

4JA) F (x) (15)

S' (16)

10



where and Z($) are the perturbed charge and current densities,

which must be determined self-consistently, and the subscript I denotes

transverse components. The perturbed current density contributed by the

background plasma is given by

J a~ a(r) E(x) =r o* ~A(()(7

where a(r) is the conductivity of the background plasma. Defining an

effective potential

= A (r) - %(r}/8 b (18)= bz

and using (11), the axial components of Eqs. (15) yield

7247raywi - (19)c 2wb c

where J (x) is the axial component of the beam current density.
bz~I

After some algebraic manipulation of the axial component of Eq. (13a),
A ^

Be V xA ,we can show that

( kccV x Be =-ikcV + i + , (20)
' z-- Bbb/

where J is the transverse component of the perturbed current density,

is a unit vector in the z-direction, and use has been made of

Eqs. (15 - 18). Making use of Eqs. (17) and (20), it is also straight-

forward to show that for axisymmetric modes (where B= const),
z

11



;) ikc(a/ar) - 4,Jbr

-rr 3r 2ia-rgr r = r ar 4na-i (Q - kC/8bb

(21)
i a (4"row/c) A(

r ar 4wa-i(g - kC/0Y 2 )

where 3br and Ar are the radial components of the perturbed beam current

density and magnetic potential, respectively.
A

From the continuity equation -iwP + V . J = 0 , and the perturbed

Poisson equation, it is evident that the perturbed electric potential

A ~2 A
(r) is at most of order 4wR . 4/(4ra - iw). Substituting Eq. (21) into

Eq. (19) and using (10) we therefore obtain the eigenvalue equation for

axisymmetric modes,

+ -2

1 a 4c- i a ;(r + b r)
47ro-i(Q - kc/8 bYb 2rar 2

-47 bz (r) - a rJbr (r) (22])
c br r r -i(2 - kc/8 b 2)J  (22a)

Lb b

A A

where the perturbed beam current density = Jbe + JbT is to be

calculated from the Vlasov equation. We find in all cases that Jbz is the

driving term in the regime 4va>c, but that r must be retained in going

to the small a limit-

We begin our analysis of the Vlasov equation by using the method of

characteristics and neglecting initial perturbations, to write the

perturbed beam electron distribution in the form

fb( 'Z)  -- e iz/ C_ () Iv Bx fb'

b -cbC p b

12



where z = z' - z, and the particle trajectories x'(z') and v'(z')

satisfy the "initial" condition x'(z = 0) = x, and v' (z = 0) = v.

Within the context of Eq. (10), the perturbed beam electron distribution

7
in Eq. (11) can be further simplified as

f(rp) ey b fO [ l(r) +2 0 dzi (r')exp(-i Z/vz)

f0
we bf

+e dzi(r')zexp(-i Z/VVz z

where p I is the transverse momentum in a frame of reference rotating at
2 2 2 bmr

frequency wb, i.e., by p2 = Pr + (P - Ybmwbr) . The perturbed beam

current density can then be expressed as a velocity moment of fb(r,.),

2 2wz afb00
2b(r) = -2re a bS 0 2 1r jp dp.L, dpzX PLa.

v z P .L a I b c apL. . J . .W dzi'(r')exp(-i z/vz) (22b)

where we have again used (10) and the property that A (r) is order ofr

4i(r) or less. The integro-differential eigenvalue equation for azimuthally

symmetric perturbations, Eqs. (22a,b), constitutes a principal result of

this article, and can be used to investigate stability properties quite

rigorously for a broad range of system parameters. The source term in

Eq. (22b) contains an integral of the unknown eigenfunction ;(r) over the

equilibrium particle orbits, which makes the equation rather intractable,

in general. However, it is possible to obtain analytic solutions to

Eq. (22) for some ranges of physical parameters. In the remainder of this

13



paper, we investigate the stability properties of the analytic solutions

to Eq. (22).

In order to carry out the orbit integration in Eq. (22b), it is

useful to introduce Cartesian coordinates (x,y) which are related to the

polar coordinates (r,6) by x = r cos 6, y = r sin 6, and to note that

the polar momentum variables (p., ) in the rotating frame are related to

P and py by p. + YbmwbY pcoso, and py - Ybnmbx = p sinO, where

2 2 2
P, = P + (P - Ybmwbr) For the case under consideration, where the

unperturbed net current is uniform out to r = R, the perpendicular

5
electron trajectories can then be expressed 

as

- 1 -

x'(z) =sin( +bZ/V sin(/

b wb

- b 7++ r(w b b )cos(e + W - r(w - Wb )COS(8 + W bZ/Vz , (23a)

y'(z) 1 -COS + wbz/vz) - cos( + wbz/Vz)}
+ bm% b

+ r(wb - wb)sin(G + WbZ/Vz) - r(w - wb+ )sin(e + / )1 (23b)
bbb b z b b z/

where the frequencies Wb are defined in Eq. (6). In the next section, we

shall develop an approximation scheme for solving the coupled equations

(22), based on exact solutions to Eqs. (22) and (23) that can be obtained

in the limit 14IRR2 /c2 1<< 1.

14



IV. DISPERSION RELATIONS FOR THE AXISYMMETRIC MODES

we shall proceed with the stability analysis of the azimuthally

symmetric modes for the particular configuration illustrated in Fig. 1,

wherein the plasma conductivity profile is specified to be a step

function,

aI ,  0<r< R b
a(r) = (24)

o2  <r<Rc

with a2 so small that

2 << 2a2 R «a (25)

This type of conductivity profile is reasonable for a beam propagating

in and ionizing a neutral or weakly pre-ionized gas. The dependence of

stability properties on the form of the conductivity profile is of con-

siderable interest, but will not be considered in full generality in the

present paper.

The method used to derive approximate dispersion relations is as

follows. We define a characteristic magnetic decay time

Td = 7r /2c 2 (26)

[Each mode has a different characteristic magnetic decay time which

differs from (26) by a numerical factor. It is convenient to use (26),

which defines the dipole decay time for the hose mode, as a reference

15



decay time throughout the paper.] In the limit wT <<1, solutions ofm

Eqs. (22) can be found, with the form

n

Fla 2jTn(r) = a(r/R), OrSRb (27)
j =0

and the quadrature of Eq. (22b) can be performed analytically to yield

expressions for in terms of *. On the assumption that these expressions

for qs(r) are reasonably accurate in the whole range O<WT < 1, we proceed to

use these expressions for J in terms of * in the full Eq. (22a), including

the WTm term, thus reducing Eqs. (22) to an ordinary differential equation

for i. This equation could be solved exactly for a dispersion relation

Q(w) (in terms of Bessel functions), but in the spirit of the preceding

analysis we choose rather to produce a variational approximation to the

dispersion relation, using in as the trial eigenfunction. One or more modes

are found for each radial mode number n, with n = 1 corresponding to the

usual sausage mode and n = 2 to beam hollowing modes.

16



A. n = 1 Sausage Mode

As a first example, we consider the n = 1 eigenfunction. In the

limit of small magnetic decay time,

4 r< J, (34a)

the eigenfunction

2 2

*i(r) =alr R), 0r~R (35)Rb, r Rc

is a self-consistent solution to Eq. (22), as shown in the previous

3literature. Since we perturb about this solution, the stability analysis

in this section is restricted to the regime

4
3 -'d <1 (34b)

The perturbed beam current density can be calculated in closed form by

substituting Eq. (35) into Eq. (22b) and using Eq. (23). The result for

Jbz' the axial component of the perturbed current density, is

2 w2(r
cb 1 a (r)(r)= - - - r 2 - b ( (36)

bz r )  4 r ar 1 (2 + )2 r O-

where the plasma frequency function w pb(r) is defined by

A^2W 2 () pbP 0 rb r< R (pb

pb ~ 0, o Rb < r -5 R

17



and the fast and slow rotational frequencies w b for beam electrons are

defined in Eq. (6). Similarly, the radial component of perturbed current

density is found to be

2
w (r)B a2i ~~pb b a

3 (r) =- (r W (38)
br OrT 2 + - -2 Br

Equiations (36)-(38) show that this mode consists of a self-similar expansion

and contraction of the beam slices, without altering the flat-topped beam

profile or mixing beam electrons at different axial coordinates T within

the beam. This is the usual sausage mode.

Substituting Eq. (36) and (38) into Eqs. (22) and carrying out a simple

algebraic manipulation, we obtain the eigenvalue equation,

1 B r( */3r) [ -iw
r Br k4/a-i(b2 kc/ -,2

-2 (r) = 0 (39)
n 2 ( + -)2 b 2 2 yr ,(9- -+b-J c'

b b)b

for the n = 1 perturbation. Equation (35) is clearly a self consistent

solution to Eq. (39) in the limit WTd - 0 (i.e. the last term can be

neglected), provided that O(M) satisfies the dispersion relation

" 2
4 l' ~ W pb ( 21 ~~'-47r - iW + 2 +47;1ab+2 0

Q- (W -W b72(

In order to find an approximate dispersion relation which includes the

influence of the magnetic decay time without going through a Bessel

function analysis of Eq. (39), we multiply Eq. (39) by r*(r) and integrate

I = . . . . . . . . . . , . . . . . , . " : : , . .- - .: : ,, , . . . . L _ , . _ , . = - -1 8 -



over r from r = 0 to r = R . It was shown in Ref. 7 that if a trialc

function is substituted in the integrals, this procedure gives a

dispersion relation Q(w) that is accurate to second order in the error

in 4t. Thus the procedure can be described as a variational approxi-

mation, although it does not give a lower bound, because the differential

operator is non-Hermitian. The result is a dispersion relation

^2

(41ra iW) Ul-iWT )r + 0 (40)
13 d n 2 ( + -2 )i2 1 (40)

2 (b -w Y)

where use has been made of Eq. (10). In the limit of a nonneutral

electron beam where 4waI/w -'0, the dispersion relation in Eq. (40) can

be simplified to

2 +m )2 A 2.2
= (wO - ) + Wpb "b (41)

which is identical to the result obtained by Uhm and Davidson. 3 The

equilibrium constraint, Eq. (7), indicates that the right-hand side of

Eq. (41) is always positive. Thus the n = 1 perturbations about a non-

neutral electron beam are stable. Analysis of Eq. (40) will be deferred

to Sec. V.

19



B. n = 2 Hollowing Mode

As a second example, we consider the n = 2 eigenfunction,

i 2 2 4 4^ a (1-4t/R + 3r /Rb) 0 < r : R b (42)
qp(r) = 00 R <r I'sR c

which is found to be a self-consistent solution to (22) in the limit

4 1. (43)
15 'd

Substituting Eq. (42) into Eq. (22b) and carrying out some tedious

algebraic manipulations that make use of Eq. (10), we can show that the

radial and axial components of the perturbed n = 2 current density are

2 _
J (r) L b 8

br 4r 2 + -) -2 3 r
-'b b

72a b b b b r 3  r 4 (44)
0 2 + - 2 R 2

and

c82  2
b 1 a pb

Jbz(r) - rr r 2 p( + -2 r
b

ca2 72a(wb " b (Wb - "W b )  ) 2 _(r R b)

+ b b 'b -b3-(45)

where wb is the rotational frequency of the electron beam. We note that

20



2
Jbz (r) is of the form A + A1r within the beam, where A and A1 are

constants. Thus this mode involves non-self-similar axisymnetric

distortions (hollowing or peaking on axis) of the beam profile.

As in the previous section, an approximate eigenvalue equation

for WT dO can be determined by substituting Eqs. (44) and (45) into

Eq. (22). This gives

IL / 4-ffO-iw + l~w1( r 4 -k$ + (r) r *(r)
r 4 a - i(n - kC/B b 2 b a i c 2

(W b b H b -b 1 a rr) 2-2 3 r(
72a 0 2 + - 2 r Dr b(46)

n 4 (w - "Wb) [ R~ R

where the function F (r) is defined by
b

w (r) 4rc8 + i /

r (r) 2 pb b b (47)
b ~ 2 _ W+ - W-2) 2 (47)O- cB

b bbb

As in the previous section, we multiply Eq. (46) by r(r) and integrate

over r from r = 0 to r = R , to obtain a variational expression for the
c

dispersion relation in terms of the unknown exact 4(r), and then use

Eq. (42) as the trial function. This procedure gives

(4 - i) -i5 iWTd))

^2 ~ 2 2+
Wpb l4r 16b + lWYb 1

8 (w b - wb wb W b4801 + (480
2 + 2 2 + 2

b b b b /

where use has been made of Eq. (10). The dispersion relation in Eq. (48)

can be used to investigate stability properties of the n = 2 perturbations

21



for a broad range of physical parameters, and detailed investigations

of Eq. (48) will be presented in Sec. V.

As a particular case, we consider Eq. (48) in the limit of a

nonneutral electron beam characterized by 4ac1/w - 0. In this case,

the dispersion relation in Eq. (48) can be expressed as

-0 (w+ 2~ ]r,2 -4(w+ - w-) 2~(49)
b b b b

^2

pb{[Q2 - 4 (w+b -)2 ] + 18(w' - W )(CW - W-)}2b bb b b bYb

which is identical to the results obtained by Uhm and Davidson.
3

2Equation (49) is a simple quadratic equation for Q , and the necessary

and sufficient condition for instability can be expressed as

(W+ - W) (W W)rbc\ 2
b b b b > 2 -bb1] (50)
(W - )2 9 Wp
b b

Note that when Eq. (50) is satisfied, the perturbations are purely

growing, i.e., Q r = ReO2 = 0, and that the rotational frequency wb can

have a large influence on stability behavior. Equation (49) is also

similar in form to the result obtained by Gluckstern1 6 for transverse

instabilities of proton beams in the quadrupole magnetic fields, which

are particularly important in the heavy ion fusion experiment.
12'1 3
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C. n = 0 Axial Bunching Mode

The n = 0 mode, which is of particular interest for

unneutralized beams, is quite different in nature from the n > 1 modes.

We find that

(r) = a0

(Zn(r/Rc)/n(R/Rc), Rb < r < R (28)

is a solution to Eq. (22) in the limit

4wT d << 1 . (29a)

and

S<< Rc (29b)

Substituting Eq. (28) in Eq. (22b) and using (29b) and the identity

Pr = p cos( -8), we obtain the axial component of the perturbed beam

current density, -na0 2< 3 a 2) 0 -5r <R

Jbz (r) = a 0 r (30)

and the radial component,

Jbr(r) = 0 . (31)

Clearly, the n 0 mode involves purely axial flow, leading to bunching.

Because a beam becomes axially rigid in the highly relativistic limit,

^Jbz is seen to fall off rapidly as yb increases. The dispersion relation
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that determines the eigenfrequency w or 0 is obtained as in the

previous sections, by substituting Eqs. (28), (30), and (31) into

Eq. (22), multiplying Eq. (22) by r*(r) and integrating over r from

r = 0 to r = R . This gives the dispersion relation
c

+4ia2  2v 2+ 4iwT = 3 w2 
(32)

C(kc/8) - - 47ria 2 Yn (R /R d 3 Q2(

where v is Budker's parameter defined in Eq. (1), a result which is valid

only if

4WTd  (29c)

and (29b) is also satisfied.

The dispersion relation in Eq. (32) can be used to investigate

stability properties of the azimuthally symmetric surface perturbations

about an electron beam in a background plasma with arbitrary values of

density and plasma conductivity. In particular, for a nonneutral electron

beam in an environment where 47ra/w - 0, Eq. (32) simplifies to

2 2v 2 -2 2(33)
3 (k c 2  w)nR/Rb)
Yb

which is identical to the result obtained by Briggs8a for the space-charge

wave mode where w - kcO . Note from Eq. (33) that the space-charge wave

22 2
is a stable mode because k2c 2 > w in this mode. We also note the

-3 2
yb dependence of S2 , which occurs because this mode (unlike the n k 1

modes) involves purely axial flow. A detailed investigation of Eq. (32)

will be carried out in Sec. V.
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V. STABILITY PROPERTIES OF AZIMUTHALLY SYMMETRIC PERTURBATIONS

We now investigate stability properties predicted by Eqs. (32),

(40), and (48) for a • 0. Depending upon the way in which a stability

problem is phrased, either w or Q may be regarded as the independent

variable, and taken to be real; a complete understanding requires an

analysis in the complex plane for both w and Q2. We shall concentrate

here on the solution of the dispersion relations in Eqs. (32), (40),

and (48), for given real values of the oscillation frequency w; then 12.1

determines the growth of the wave on a particular beam segment as the

beam propagates downstream.
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A. Stability Analysis in the High Conductivity Regime

To make the theoretical analysis tractable, we assume that

the plasma is collisional to the extent that it is characterized by a

real, scalar conductivity. Moreover, we consider in this section the

case in which the perturbed beam space charge field is completely

neutralized by the plasma, which requires a high conductivity plasma,

4iro << w (51)

Within the context of Eq. (51), the dispersion relations in Eqs. (32),

(40), and (48) can be simplified considerably.

(a) When (51) is satisfied, the dispersion relation in Eq. (32)

for n = 0 reduces to

2
2v w 1 4 (52)
32 4 Td n(Rc
7b

which clearly indicates instability. If in addition the magnetic decay

time is small, 14WTdin(Rc/Rb)I << 1, Eq. (52) simplifies further to

2 2v 2n(/= - w,) , (53)

7b

which yields a purely growing mode. Note from Eq. (53) that the growth

3/2
rate QI is inversely proportional to Yb/, which indicates that this

unstable mode is important only for a mildly relativistic electron beam

satisfying b < 5; the rapid fall-off of 9, with yb is due to the purely

axial flow that occurs in this mode. It is instructive to compare
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Eq. (53) with Eq. (33), in which the terms proportional to k2c 2 and
2
w are due to the perturbed beam space charge and magnetic

fields, respectively. In a nonneutral electron beam, the stabilizing

influence of the perturbed space charge field always prevails over the

destabilizing influence of the perturbed magnetic field; thus the beam

supports only stable space charge waves. However, in a high conductivity

plasma characterized by Eq. (51), the stabilizing influence of the

perturbed space charge field vanishes; the mode is then unstable, as

shown ir Eq. (53).

(b) The dispersion relation in Eq. (40) for n = 1 simplifies

to

2 + 2 ^2 2
- b W b) + Wpb b 4.

P2 (W+ - )2 3 d'
b wb

when 4a >> w. The instability mechanism can be easily identified in a

self-pinched electron beam where the applied magnetic field vanishes and

the fractional charge neutralization becomes unity (w = 0, f = 1).

In this particular case, Eq. (54) can be expressed as

2 _ 2 22 - 8 (1 - 2 f
pbb m 4=2 . (55)

2 8( -f d
pb b m

Equation (55) clearly indicates that the instability of the n = 1

sausage perturbation is driven by the plasma return current (f ) and them

magnetic phase lag (WT d). Even for a very small magnetic decay time

satisfying Wrd << 1, the system supports a purely growing mode whenever

the partial current neutralization f satisfies
m
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f > 0.5 ; (56)

m

the growth rate of this mode is

^

Q pbab (2fm-l)

We note further that Eq. (55) reduces to

Z2 = T 2 C 1 (57)

b 6 b

for the caseU T d << 1. In the limit of r1 = b Eq. (57) is remarkably

similar to the result obtained by Weinberg8 within the framework of the

coaxial circular electron beam model.

The influence of the magnetic decay time on the stability behavior

will be investigated numerically in Sec. VB.

(c) The dispersion relation in Eq. (48) for n = 2 simplifies to

A 2  2 + ) 2
18wU Wb b b ) (Wb b + pbb

2 + _ _2 2 4(w - 2 _2 + -2
~ bb b b b b

(58)

=-i+ iWT
15 d

for high conductivity plasmas. We note from Eq. (58) that for n - 2 as

well the magnetic phase lag (wTd ) and plasma return current (fm) cause

the instability. In order to illustrate the influence of the plasma

return current on the stability behavior, we consider Eq. (58) for a

self-pinched beam (wb = , fe 1) and for a small magnetic decay time
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(WT d << 1). In this particular case, the dispersion relation in Eq.

(58) can be further simplified as

Z - [l0(l - f ) - ]Z 2 + [16(l - f )+ 1] (1 - fm) = 0 , (59)

A

where the normalized eigenfrequency Z is defined by Z = U b , and we
pb b

have also set wb = 0, i.e. we consider the case of a non-rotating pinched

2
beam. Equation (59) is a simple quadratic equation for Z , and the

necessary and sufficient condition for instability can be expressed as

f > (2 - 31/2/2)/3 = 0.38 . (60)
m

In contrast to the case of n = 1, we note from Eq. (59) that the n - 2

perturbations are not always purely growing when Eq. (60) is satisfied,

i.e., Z r0. Unstable n = 2 perturbations can reduce the beam densityr

at axis, leading to a hollow beam profile. Detailed numerical investi-

gations of Eq. (58) are carried out in the next section.
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B. Numerical Analysis for Stability Properties

In this section, we summarize the results of numerical studies

of the dispersion relations in Egs. (32), (40), and (48) for a broad

range of the beam electron energy yb' the normalized oscillation frequency

1jR/c, the plasma conductivity parameter

A

- 4TTaJ/ , (61)

and the focussing parameter

+ -2 A2

T b) /Upb (62a)

The analysis in this section is restricted to a self-pinched electron beam

with Icb = 0. EThe stabilizing influence of the applied magnetic field

( cb) on a related instability (resistive hose) is discussed in Ref. 7.]

Making use of Eq. (6), we can simplify the parameter Tf in Eq. (61) to

= 2C (1-) - (1-f)] (62b)
b m e

for self-pinched beams. We note that the value of the parameter rj is

limited to the range 0 
< 71 : 7 2.

b'

Defining the normalized eigenfrequency

A

Z / pb (63)

the dispersion relations in Eqs. (32), (40), and (48) can be expressed

as
2 A C 2 .2

2 Zn(Rc/R) 2 (a2/al) b + i/Yb b 0,
z + 2 2 r i]l2Wb 2 (2/1)% 2 7 WbC£(c/Rb)

(64)
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for the n =0 perturbation,

2 .23+ i/Y b

2 b__ __ _ _b _ _
Z2 - + = 0 (5

- l - Rb/c) 2/63

for the n = 1 perturbation, and

1 2 2
2 2 2 1

(Z -I) (Z - 4TI) + (Z + TI) =0, (66)
- i) - I/c)2 /30]

for the n = 2 perturbation. In obtaining Eq. (64), use has been made of

Eq. (10). Moreover, we have assumed Lb = 0 in Eq. (66), which is con-

sistent for self-pinched beams. Equations (64), (65) , and (66) clearly

show that only the n = 0 mode is influenced by the location of the con-

ducting wall.

Typical numerical results of Eqs. (64) - (66) are summarized in
2

Fig. 2 for yb = 1.5, (Wpb/c) = 0.01 and the parameter Tf - 1.11. Note

from Eq. (62) that T = 1.11 is the largest possible value of Tj for

= 1.5, corresponding to a space charge neutralized electron beam

(f e 1) with no plasma return current (fm 0). We note the following

features of Fig. 2: (i) The n = 0 and n = 1 unstable modes have Z < 0,~r

i.e. propagate backward in the beam, while one of the two n = 2 unstable

modes [denoted n = 2(+)] has Z > 0 and the other £n = 2(-)] has Z < O.r r

The n - 2(-) mode is always the faster growing of the two. (ii) Each

mode, except n = 0, has two maxima of the growth rate 'I., the first

occurring for all modes at C 4 1, the transition point from electrostati-

cally to magnetically dominated forces, and the second occurring at

6(cAu R) 2, i.e. LUTd 3/4, (n = 1), (67a)
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30(c/jR) , i.e. WTd ; 15/4 (n = 2). (67b)

Note that when f << 1, the second instability peak is driven by the phasem

lag Td between the beam oscillations and the magnetic restoring force, and

it is appropriate to scale w to Td. (iii) The n = 1 perturbation is the

most unstable azimuthally symmetric mode. (iv) For a space-charge neutralized

beam (f = 1) with f << 1, the absolute value of Doppler-shifted real fre-e m

quency can be approximated by IZ I l 1 /2 for n = 1, and 1Z i - T11/ 2 andr r

1Z I ,l 2 I/2 for n = 2 over the entire unstable range of the conductivity

parameter C [Fig. 2(b)]. Since this dependence is so simple, Z will not ber

shown in the subsequent figures.

Figure 3 is similar to Fig. 2a, except that a higher frequency

2 22
(W Rb /c = 0.1) is considered. We note that Eqs. (67) for the location

of the magnetic-dominated instability peak are well satisfied; the location

of the peak thus moves to the left on a t scale. The first instability peak

remains at C A 1. The growth rate of the n = 0 mode is seen to increase

significantly with (uR/c), but the n = 1 and n = 2 modes depend weakly on

this parameter.

In Fig. 4 we consider a highly relativistic (yb = 10) case, again with

f = 1, f = 0 (which gives rj = 1.98 in this case). The n = 0 mode is not• m

shown since its growth rate is very small for large yb* The most striking

change from Figs. 2 and 3 is that the two peak growth rates of each mode

have become equal, and in fact the Z () curves are symmetric (on a
2

logarithmic scale) about a point C - (wRb/c)2. This feature is easily seen

to be a consequence of Eqs. (64) - (66). When Yb >> 1, each of these equa-

tions takes the form
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FM constF (Z) =ost, (68)

(1 - A1 / ( - /

where F(Z) is a function of Z that is different for each of the two modes,

and A1 and A2 are constants which take different values for each of the

two modes. It follows that Z() takes the same value at two points Ci and

2= (AI/A2 91), i.e. the Z() curve is symmetric (on a log plot) about
= (A/a2)1/2.

The dependence of stability properties on the parameter rj is illus-

trated in Fig. 5(a) for yb = 1.5, n = 1, in Fig. 5(b) for yb = 1.5,

n = 2, and in Fig. 5(c) for yb = 10, n = 1, where the normalized growth

rate Z. is plotted versus I for (wRb/c)2 = 0.1 and several values of the

parameter T1. It is evident that as the parameter Tj [defined in Eq. (62)]

decreases to zero (e.g. weakly pinched beam--nearly complete curreitt and

space charge neutralization), the growth rate increases rapidly, and the

strong growth occurs over a broad range of w, rather than being confined

to two sharp peaks. As discussed in Sec. V.A for the high conductivity

regime, this remarkable behavior is due to repulsion of the beam current

by the plasma return current (fm > 0) flowing in the highly conducting

plasma channel. We also note from Fig. 5(b) that the n = 2 (+) perturbation

is stable for T = 0: the dispersion relation, Eq. (66), reduces to

Z2  (Z2 + od 2 2 0
(C-i)C I GCUR b/c) /30

which gives only one unstable mode, n - 2 ()
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VI. HOSE INSTABILITY

Although this paper has been concerned primarily with the axisymmetric

(m = 0) instabilities, essentially the same analysis can be used to treat

higher m modes over the full range of values of the background conductivity

a. provided that a(r,T) is r-independent over the range 0 < r < R . Inc

particular, it is of interest to compare the growth characteristics of the

m = 1 hose instability to those of the axisymmetric modes we have studied.

Our analysis of the hose instability will be based on the same equilibrium

(Sec. II) except that we now take a to be a constant, which can have any

value, over the full range of r and z. We need not make the long wavelength

assumption (10); the weaker assumptions (11) and (12) suffice.

For the hose mode, all perturbed quantities are taken to vary as

A
S(x,t) = *(r) exp i(kz +a - wt)

(69)

A

A (r) exp £-i(wT + CIz/v z - ),

so that

.2= 1 r 2 r1
r

The analysis of Maxwell's equations follows that of Sec. II through Eq. (19),

at which point the constancy of 0 is used in (18) and (19) to show that

dl1d A 4Tra wi, A~ 4rr Tr kbc )dr r drr + 2 _,T-a4-iw) c - 2 Jc byb

(70a)

+- (rbr ) + i j

r3b Ldr
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The analysis of the Vlasov equation is similar to that of Sec. II, leading

in this case to the expression

Trr 0
2 d d f

0 (70b)

o

+ - jb) j dz i*(r' ) exp Ci(z- - )

Equations (70) define the m = 1 eigenvalue problem as Eqs. (22) did for

m = 0.

In the case of the hose mode, in the limit

2

WT '- 2 <l (71)
2c2

Eqs. (70) support a solution

A ar , 0' r' R! ,

4(r)a 2 2 2-1 2r-r (72)
0  (Rc-%1  (R -r), r

essentially a distortion free snake like displacement of the beam and the

associated electromagnetic fields (within the constraints imposed by the

conducting boundary conditions at r = Rc ). Using the orbit equations (23),

Eq. (70b) can then be solved for the perturbed current, with the results
A 2 2

A - pb b w*(r) & (r-R b )  (73a)
J4~r  TT -- 4 ( b- ) (41-W b+ r

A (r ib ('W b) (r) UU b 2 (r)(7b

, (73b)-

Jb r(r ) 4 TT r ( -b - ( l b + )
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A w r

Jba(r) = i Jb(r) + IL Jbz(r). (73c)
Jbr bc bb

For finite values of WT., we follow the same approximation schemea

used in Sec. IV to derive the dispersion relation. Equation (73) is used

in Eq. (70a) to derive the dispersion relation,

X 2 (r)r
I d 4i -b ) d (rbTr- r j iL+ (--7b)

(4,b- b 
r

44 -~u iU ) A (74)

c

b lup (r-R ) 4r4T[cy -i kc )] bi r

(a bb2 ;b2/ b- ) - +) r

We note that in the high conductivity limit 4TU >> II, Eq. (74) reduces

to the eigenvalue equation previously obtained by the authors,7

A 2 2 A
d d A 4nui~ ^  pb b (r-R.()

T- - T- r '4 + 4- 5 (Rb) . (75)
c 2' b-) ( t b+ )

A

As in Sec. IV, we proceed by multiplying both sides of Eq. (74) by r ' and

integrating over r from r = 0 to r = R , thereby obtaining a variationalc

expression for the dispersion relation n(w),

R c i(Q-Wb)wpb 2 (r 2
-dr 4rraiu b 27

-4 TT i auu R A 2
+ 2 (4M - iw) c drr (76)

c 0

Fb4b 2  b 1 (f~ 2 (2-.b-)2JTr -i 
C 2 2 -

[T . ~ brb b b

36



A

We then use Eq. (72) as the trial function (r) in (72) , finally arriving

at an approximate dispersion relation

4TTU 2gf+ A pb 2b + iL - (gb+ ) pbYb b)
4b 2g + ) (Q-Wo b- )  b+ -

(77)

4- 4rriau (4TTJ - i ) gfPb [g 9 n (Re/b) -R

C

where

2 2 -1
gf (l - Rb/R

Equation (77) can be used to investigate hose stability properties over a

broad range of system parameters, including conductivity , fractional

charge and current neutralization f and fm? applied magnetic field strength
em

(jcb), electron energy (yb), and proximity to the conducting guide ( /Rc ).

In the limit of 4TTU << IuI of low background conductivity, Eq. (77) reduces

to the result obtained by Uhm and Davidson,

A 2

b (78)2yb (l-wb ('b+)
b b b

which leads only to stable oscillations. On the other hand, in the high
7

conductivity regime 4,flY >> JulI, Eq. (77) reduces to our previous result,

A 2 2
WU R
+ pbb 4TTOjj i f2 - c I

2gb 2 gfR g (79)

-b -) ( - b + )  c b2
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For comparison with the results of Sec. V for the axisymmetric in-

stabilities, we present a number of numerical solutions of Eq. (77) for

Re 2(i) and Im Q(i), specifying b =  b = 0 and Rb/R c = 0.5, but sur-

veying a broad range of beam electron energy yb' normalized frequency

,U /c, normalized conductivity , and focussing parameter T1. These re-

sults have been plotted as the dashed curves in Figs. 2-4, along with

the results for the various axisyrmetric modes (solid curves). The hose

dispersion relation is seen to be remarkably similar to those of the

axisymmetric modes. In Figs. 2-4 (cases with no return current), the

hose growth rate 2. is seen to have two sharp peaks, the first at 1

and the second at

- 3(c/LU R 2 i.e. 'Ud 0.4 (80)
bd

Both the location of the peak growth rate given by Eq. (80) and the value

of the peak growth rate depend to some extent on the value of Rb/Rc; the

corresponding results for the axisymmetric modes are independent of R .C

The peak hose growth rates plotted in Figs. 2-4 for Rb/Rc = 2 lie between

those of the n = 0 and n = 1 axisymmetric modes; for Rb/R c -+ 0, however,

the hose growth rates would be slightly greater than those of the axisym-

metric modes. In the limit of large yb' Eq. (77) can be put in the form

(68), so that the two-peaked structure of Z(C) becomes symmetric on a log

C plot, as seen in Fig. 4 for all modes. As the return current increases,

i.e. '. decreases to zero, the growth spectrum of the hose mode broadens and

becomes singly peaked, and the maximum growth rate increases significantly.

Like the sausage and hollowing modes, the hose is driven strongly unstable

by the mutual repulsion between the beam current and return current, when

the latter has the same equilibrium radial profile as the former.
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VII. CONCLUSIONS

In this paper, we have investigated the stability properties of both

azimuthally symmetric (6/<G = 0, or m = 0) and hose (m = 1)) perturbations

in an intense particle beam propagating parallel to a uniform applied

A

magnetic field B2z through a background plasma. The analysis was carried

out within the framework of the Vlasov-Maxwell equations, assuming long

wavelength, low frequency perturbations. The analysis was simplified by

considering only step-function, time-independent conductivity profiles,

by requiring that the plasma charge and current density have the same

radial profile as the beam, and by considering a beam with a "loss cone"

distribution function, in which all of the beam electrons have the same

value of axial canonical momentum and the same value of energy in a frame

of reference rotating with angular velocity u b* This distribution leads

to a flat-topped beam radial profile; the unperturbed beam electron orbits

are then simply harmonic at a single frequency.

Equilibrium properties were calculated in Sec. II. The formal sta-

bility analysis 'or azimuthally symmetric perturbations was carried out in

Sec. III and an integro-differential eigenvalue equation was obtained,

which included beam electron thermal effects and applied generally to any

radial mode number. In Sec. IV, dispersion relations for the axisymmetric

modes with radial mode numbers n - 0, 1, and 2 were obtained analytically

from the integro-differential eigenvalue equation (22), for a moderate value

of the magnetic decay time such that UTd 4 1. Also discussed in Sec. IV were

the stability properties of a nonneutral electron beam characterized by

A

4TGI/W -0. A parallel treatment of the hose mode was carried through in

Sec. VI.
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Analytic and numerical investigations of the n = 0, 1, and 2 axi-

symmetric dispersion relations were carried out in Sec. V, and the hose

dispersion relation in Sec. VI, for a collision-dominated background

plasma. It was shown that the n - 1 and n = 2 axisymmetric modes and

the hose mode are all driven unstable by both the plasma return current

(f r) and the magnetic decay time (,uTd). Even for a very small magnetic

decay time, the system can be unstable whenever the fractional current

neutralization satisfies f > 0.5 for n = 1 and f > 0.38 for n = 2.
m m

We found that the n = 1 perturbation is the most unstable axisymmetric

mode, with maximum growth rate Zi = 0.205, for a relativistic beam with

fm = O slightly less than that of the resistive hose instability when

/R c = 0, but greater than the hose growth rate when /Rc c . Finally,

it has been found in the case of zero plasma return current (f = 0) thatm

the growth rate of instability has two local maxima corresponding to the

A
electrostatic regime (4TTJ 1 = Uj) and to the regime where the instability

is driven by the magnetic decay time (wTd - ).

The resistive hose instability, in the high conductivity regime, has

been studied6'7 for rounded beam profiles which introduce dispersive

anharmnic effects. It is of considerable interest to extend the analysis

of the axisymmetric modes in this way, as well as to study the effects of

more general conductivity and plasma current geometries. It is believed

that the hose and axisymmetric modes respond differently to these

generalizations of the equilibrium. Such effects will be considered in

future work.
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Fig. 4 -Plots of normalized growth rate Z versus c [Eqs. (65) and (66)]

for Yb 10, (a) (wbc 2 . 0.1 (b) (b/)2 a .,and paraeters other-

wise identical to Fig. 2.
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